Team 9: Development of Power Converting Sub-System of Kite Power Generator

Andrew Colangelo, Zachary Ezzo, Matthew Hedine, Denitsa Kurteva

Advisor: Dr. Kunihiko Taira Sponsor: Mr. Jeff Phipps

Presentation Overview

- Project Scope
- Project Objectives
- Progress Made
- Future Plans
- Challenges
- Planned Methodology
- Summary

Denitsa Kurteva

The Problem at Hand

Worlds energy consumption expected to increase by 48% by the year 2040[1]

- Wind turbine
- Solar energy
- Nuclear energy
- Water shortage in Greek Islands[2]
 - Wind speeds of around 20mph

Design and build the power generating system of a kite power generator, and scale for a 100kW concept kite.

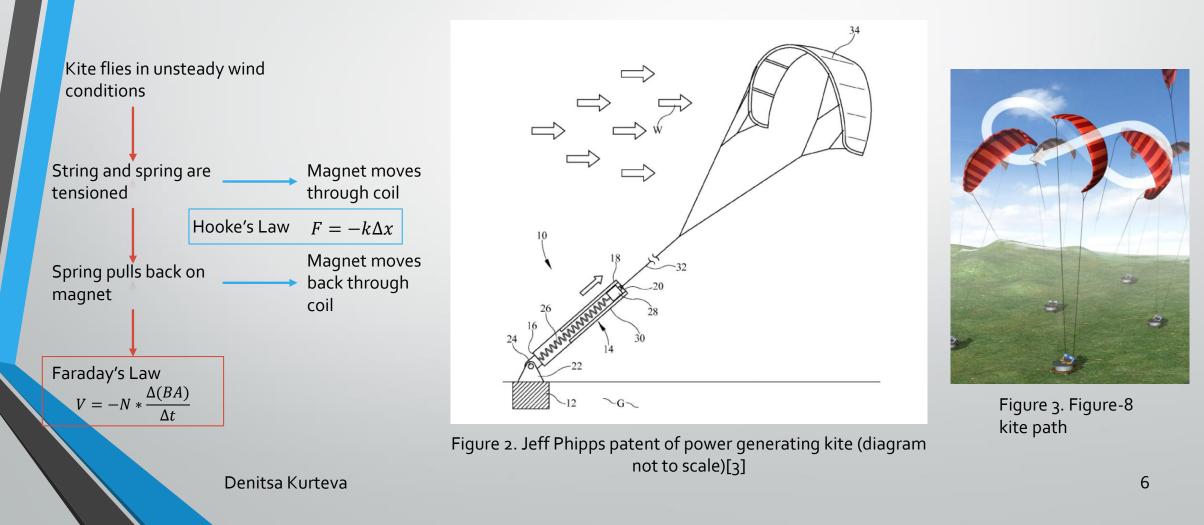
Constraints

- Altitude between 500 and 1500 feet
- Must deliver AC power to grid
- Limited to off the shelf products
- Optimized for Greek Islands

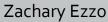
Figure 1. Picture showing mountainous Greek islands

Project Goals

Demonstrate that magnet in electrical coil will generate usable electricity


- Power a lightbulb
- Varying tension in line/spring
- Use a kite to oscillate magnet
- Concept for a method for optimization of energy output based on wind speeds
 - Scale for a 100kW kite
- Show commercial potential
 - Compare to Makani
 - Water Collection

Makani energy "kite"


Denitsa Kurteva

General Schematic

Progress Made

- Demonstration Model Design
- Came up with method to stabilize/control the kite
- Method of varying the spring stiffness
 - Concentric springs
- Determined optimal conditions for necessary power generation
 - Magnet speed/strength
 - Number of coils
 - Magnet speed of 50 wraps/sec with magnet of 1.32T strength to power 40W light bulb

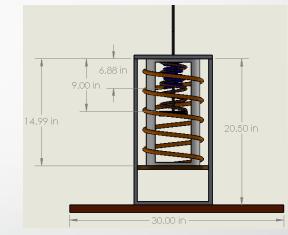
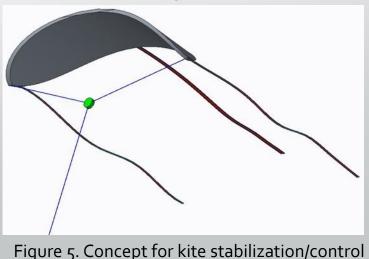



Figure 4. Demonstration model

Kite Testing

- Tested kites for maneuverability
 - 1 traction and 1 stunt kite
 - Chose the traction kite due to more lift
 - Force output via spring scale:
 3-5 lbs on straight path, 10-15 lbs on curves

Zachary Ezzo

Tethering the Kite

• 3 String Kite

- Attach an additional string to the kite to tether to the oscillator
- Use remaining two to maneuver kite
- 1 String Kite
 - Tie the two string kite to create one string
 - Attach a kite tail for kite stabilization
 - Wing flap on kite string for oscillation
 - Only for steady winds

Mimicking Kite Motion

- Designed concepts for kite oscillation if kite cannot be correctly maneuvered
 - Stationary bike

Zachary Ezzo

• Motor

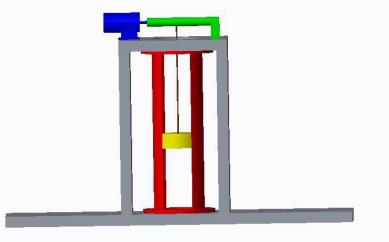
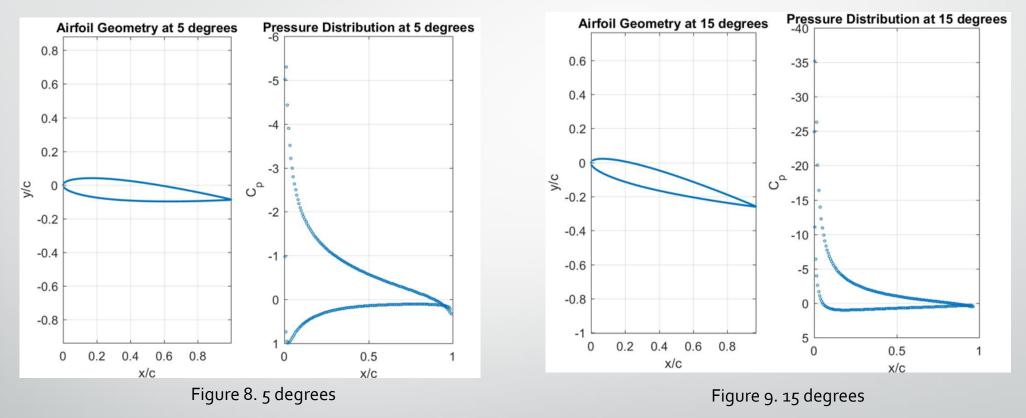



Figure 6. Motor

Lift Calculations

• 15 m/s headwind—Lift force at 5 degrees angle of attack is 70 N. Lift force at 15 degrees angle of attack is 201 N.

Zachary Ezzo

11

Water Collection Concept

- Air foil acts as a funnel
- Grooves on air foil direct moisture to a tube
- Tube transports water to the ground

Figure 10. Traction kite

Challenges

- Controlling demonstration model kite
- Feasibility for scaled model
 - What needs to happen for 100kW of power
 - Will we actually compete with other forms of alternative energy?
- Portability
- Determine the significance of losses in the elasticity of the string
- Water collection
 - Added weight
 - Freezing

Figure 11. Icing on an airfoil

Planned Methodology

Table 1. Gantt Chart for Spring semester

Task Name	Duration	Start	Finish				Feb		Mar					
				Jan 23	Jan 30	Feb 6	Feb 13	Feb 20	Feb 27	Mar 6	Mar 13	Mar 20	Mar 27	Apr 3
Order kites	10d	01/23/17	02/03/17											
Finalize ground plate and housing designs	10d	01/23/17	02/03/17											
Machine grounding plate	7d	02/01/17	02/09/17											
3D print springs housing	7d	02/01/17	02/09/17											
Test kites	8d	02/08/17	02/17/17											
Kite control concept generation	10d	02/13/17	02/24/17											
Kite control concept selection	6d	02/25/17	03/03/17											
Kite performance optimization	8d	03/01/17	03/10/17											
Concept kite material selection	5d	03/08/17	03/14/17											
Demonstration model testing	26d	03/01/17	04/05/17											
Refine demonstration model	14d	03/17/17	04/05/17											
Finalize 100kw scale model concept	6d	04/01/17	04/07/17											

- Weekly meetings with sponsor/faculty advisor
- Bi-weekly meetings with team to tackle problems and catch up on individual tasks

Future Plans

- Assemble demonstration model and test with kite
- Refining test model
- Finalize concept for 100 kW scale model
 - Failure Modes Effects and Analysis

Denitsa Kurteva

Summary

Design and build the power generating system of a kite power generator, and scale for a 100kW concept kite.

- Demonstration Model parts have been selected, ordered and received
- Challenges ahead
 - Control demonstration kite
 - Water collection feature
- Ready to machine parts and assembly demonstration model

References

[1] http://www.eia.gov/todayinenergy/detail.php?id=26212
[2] http://www.climatechangepost.com/greece/fresh-water-resources/
[3] https://www.uspto.gov/patents-application-process/search-patents
[4] http://www.conserve-energy-future.com/Disadvantages_SolarEnergy.php
[5] https://www.windfinder.com/weather-maps/forecast/greece#6/38.367/23.810
[6] http://www.kitenergy.net/technology-2/key-points/
[7] https://adrienjousset.wordpress.com/2009/09/15/kitano/
[8] https://www.ted.com/talks/saul_griffith_on_kites_as_the_future_of_renewable_energy?language=en

Questions?